

Bilkent University​

 Department of Computer Engineering​

 Senior Design Project ​

T2406 ​

Recruit4Me ​

Final Report

22101007 Kanan Zeynalov kanan.zeynalov@ug.bilkent.edu.tr ​

22003108 Musa Yiğit Yayla yigit.yayla@ug.bilkent.edu.tr ​

22103449 Burak Efe Öğüt efe.ogut@ug.bilkent.edu.tr ​

22003416 Mehmet Ege Kayaselçuk mehmet.kayaselcuk@ug.bilkent.edu.tr 22003672

Bahadır Gunenc bahadir.gunenc@ug.bilkent.edu.tr

 Fazlı Can, Mert Bıçakçı, Atakan Erdem

mailto:bahadir.gunenc@ug.bilkent.edu.tr

TABLE OF CONTENTS​

TABLE OF CONTENTS​ 2
1.Introduction​ 4

1.1 Purpose of the system​ 4
1.1.1 Recruit4Me’s Two-Stage Innovation​ 4
1.1.2. Stage 1: Automated Candidate Elimination​ 5
1.1.3. Stage 2: Pay-as-You-Go Expert Hiring​ 8

1.2. Design goals​ 9
2. Requirements Details​ 10

2.1 Functional Requirements - Flow​ 11
2.1.1 User Management & Authentication​ 11
2.1.2 Job & Application Lifecycle​ 12
2.1.3 Stage 1: Automated AI-Driven Screening​ 12
2.1.4 Stage 2: Pay-As-You-Go Expert Interviews​ 13
2.1.5 Reporting & Analytics​ 14

2.2 Non-Functional Requirements​ 14
2.2.1 Usability & Accessibility​ 14
2.2.2 Performance & Scalability​ 14
2.2.3 Reliability & Availability​ 15
2.2.4 Security & Compliance​ 15
2.2.5 Maintainability & Observability​ 15

3. Final Architecture and Design Details​ 16
3.1. ML Based CV Evaluation​ 17
3.2. Structured Question Selection and Adaptive Testing​ 19
3.3. Persistent data management​ 21
3.4. Database and Storage Solutions​ 22

3.4.1. Data Processing and AI Model Deployment​ 22
3.4.2. Security, Compliance, and Data Integrity​ 22

3.5. Access Control and Security​ 23
3.6 Subsystem Services​ 24

3.6.1 UI Layer​ 24
3.6.2 Auth Layer​ 24
3.6.3 Business Logic(Service) Layer​ 24
3.6.4 Database Layer​ 25
3.6.5 Jitsi Instance Layer (Hosting Interviews)​ 25

4. Development and Implementation Details​ 26
6. Maintenance Plan and Details​ 44
7. Other Project Elements​ 46

7.1 Consideration of Various Factors in Engineering Design​ 46

7.1.1 Constraints​ 46
7.1.1.1 Implementation Constraints​ 46
7.1.1.2 Economic Constraints​ 46
7.1.1.3 Ethical Constraint​ 47

7.1.2. Standards​ 47
7.2 Ethics and Professional Responsibilities​ 48
7.3 Teamwork Details​ 48

7.3.1 Contributing and Functioning Effectively on the Team​ 48
7.3.2 Helping Create a Collaborative and Inclusive Environment​ 49
7.3.3 Taking Lead Role and Sharing Leadership on the Team​ 49

8. Conclusion and Future Work​ 50
9. Glossary​ 51
10. References​ 53

1.Introduction

Recruit4Me aims to provide a web based software platform for hiring IT & tech

professionals while hosting numerous features enhanced by technologies including AI & ML.

Project proposes high innovation through two main stages, automated candidate elimination

and pay as you go interviewer expert hiring done by companies. This way companies with

limited HR resources and large applicant pools reduce costs by AI automation, followed by HR

& technical expert hiring for conducting candidate elimination. Thus, with pay as you go hiring,

further employment opportunities are introduced for interviewer experts, who also can be

employed in some full time job, proposing extra revenue. First stage of Recruit4Me consists of

automation tools, which companies can use, including CV parsing ML model labeling

candidates' technical and soft skills, AI generated technical questions relevant to the job

position, and speech to text models. This first phase reduces HR labor cost by performing

automated and accurate preliminary candidate elimination. Furthermore, companies are able to

customize these models with respect to their professional and ethical principles. Subsequently,

the second phase, interview expert hiring, involves companies employing HR and technical

experts for managing their recruitment. Given permission, interview experts can also manage

candidate pools and introduce new potential candidates. We also include searching and filtering

candidates’ profiles by their skills, job listings by required expertise and skills, enabling further

interaction.

​

 1.1 Purpose of the system

​ The system’s main purpose is to integrate the CV processing and testing question based
candidate elimination in an automated manner, where companies are not required to handle
different platforms to accept candidates.

 1.1.1 Recruit4Me’s Two-Stage Innovation

Recruit4Me is designed as a two-stage hiring platform that combines automated

AI-driven screening with human insights in a sequential process​. This approach tackles the

recruitment funnel from both ends: the first stage rapidly filters and evaluates candidates using

machine learning, and the second stage injects expert human judgment on a pay-per-use basis.

By structuring the workflow into these stages, We aim to significantly reduce the burden on

in-house HR teams while still ensuring that final hiring decisions benefit from human oversight

and domain expertise.

1.1.2. Stage 1: Automated Candidate Elimination

In Stage 1, we employ a suite of AI and ML tools to conduct automated candidate

screening. The process begins as candidates submit their CVs to the platform. At this point, a

custom ML model parses each CV in detail, extracting key information such as the candidate’s

education, technical skills, work experience, project history, and even language proficiency​.

Using natural language processing (NLP) – including Named Entity Recognition (NER) to

identify relevant entities like degrees, job titles, or skill keywords – the system builds a

structured profile of each applicant from the unstructured resume text​. It then evaluates the

candidate across multiple categories (on the order of four or five major criteria) to determine

their suitability. For example, the ML model rates or scores the candidate’s qualifications in

areas such as:

●​ Educational Background – e.g. the level and relevance of degrees, and even the

ranking or prestige of institutions attended​.

●​ Technical Skills – the depth and breadth of the candidate’s skill set, programming

languages or tools known, and how well these match the job requirements​

●​ Work Experience and Projects – the quality, size, and impact of past projects or roles,

indicating practical experience in the field​.

Each category yields a component score, and together these form an aggregate

candidate profile score that quantitatively represents the candidate’s overall fit​. Candidates are

effectively ranked based on these scores​. This data-driven elimination step allows the system to

confidently short-list the top candidates for further evaluation, filtering out those who do not

meet the role’s baseline criteria. Importantly, the Stage-1 model is not a one-size-fits-all static

filter – it can be customized to a company’s specific requirements and values. For instance, an

employer can adjust the weightings or thresholds in the model to emphasize certain skills or to

align with the company’s professional and ethical principles​. The outcome of Stage 1 is a

decision on whether each candidate is “qualified” for Stage 2. Only those who meet or exceed

the predefined benchmark (e.g. top N% or above a score cutoff) are advanced to the next stage,

while others are politely eliminated from the process (with the possibility of feedback). By

automating this first-pass filtering, our Stage 1 dramatically reduces HR workload and cost: it

performs an “accurate preliminary candidate elimination” without any human intervention​,

allowing companies – especially those with limited HR staff – to handle large applicant pools

efficiently.

After a candidate submits their CV, the platform performs NLP-driven data processing

(extracting entities like skills and experience and grading the resume on key criteria such as

education, skill-match, projects, etc.). It then proceeds to question generation, presenting the

candidate with structured interview questions. The candidate’s spoken responses undergo

response handling – they are transcribed via speech-to-text and analyzed with AI (OpenAI

GPT-based models) – and a final AI evaluation is produced. A feedback loop continuously

fine-tunes the ML models using accumulated data, improving accuracy over time.​

Illustration of our Stage-1 automation pipeline. ​

​

Beyond static resume data, our Stage 1 incorporates an automated technical interview

phase to further vet candidates. Drawing on the candidate’s profile and the target job

description, the platform uses an AI question-generation module to pose a series of structured

questions to the candidate​. These questions are designed to evaluate both technical expertise

and problem-solving abilities, and are dynamically tailored to the role’s requirements​. In

practice, the system can generate a set of questions of varying difficulty – for example, a few

basic questions to verify fundamental knowledge, followed by more challenging scenario-based

or algorithmic questions to probe the candidate’s depth of understanding. This structured

easy–medium–hard question set ensures a comprehensive assessment across proficiency

levels.

We adopt a similar philosophy but use the powerful language understanding of GPT-4 to

perform a nuanced evaluation of what the candidate said. The end result of Stage 1 is a rich,

multidimensional profile for each candidate that includes their resume-derived scores, their

performance on auto-generated interview questions, and a recommendation on whether to

proceed. Only the candidates who pass this AI-driven screening (roughly analogous to making a

“shortlist”) move on to Stage 2.

1.1.3. Stage 2: Pay-as-You-Go Expert Hiring

Candidates who clear the automated Stage 1 are then forwarded into Stage 2, which

introduces human expertise into the hiring process. Stage 2 is characterized by “pay-as-you-go”

expert involvement​. In practical terms, this means that companies using Recruit4Me can hire

external HR and technical interviewers on-demand to conduct in-depth evaluations of the

shortlisted candidates. Rather than relying solely on their internal HR personnel (which some

startups or small firms might lack, or which might be overwhelmed during mass hiring),

employers can tap into a marketplace of vetted interview experts through the platform. These

experts – who are mostly experienced HR professionals or senior engineers in relevant tech

domains – are engaged as needed (per interview or per batch of candidates), hence

“pay-as-you-go.” This model is beneficial for companies with limited recruiting resources

because it converts a fixed overhead (maintaining a large full-time recruitment team) into a

variable cost tied to actual hiring activity​. It also creates a new kind of gig economy opportunity

for interviewers: many of these experts could be professionals with full-time jobs who conduct

interviews for extra income, allowing their specialized skills to be shared across organizations​.

In Stage 2, the focus is on human judgment and interaction to complement the AI’s

Stage-1 assessments. The hired experts review the detailed candidate profiles and performance

data coming out of Stage 1. They can conduct live interviews (e.g. a technical deep-dive or a

soft-skill/cultural fit interview) with each candidate to validate and expand upon the AI’s findings.

The platform facilitates these interactions and provides the experts with tools to manage

candidates. Experts can add qualitative evaluations, double-check the technical abilities

(perhaps with coding exercises or system design questions in a live setting), and assess

intangible qualities like teamwork, creativity, or attitude that automated tools might not fully

capture. Additionally, we enable experts to manage candidate pools on the platform​. For

example, an expert can maintain a pool of “promising data scientists” identified through the

process, which the company can revisit for future openings. Experts, with the company’s

permission, can also introduce new candidates into the pipeline​ – this could occur if, say, an

expert knows a strong candidate in their network and wants to add them to the pool, thereby

continuously enriching the talent database beyond those who originally applied. Throughout

Stage 2, we provide tools for scheduling, feedback collection, and candidate tracking so that the

collaboration between the company and the hired experts is seamless. The end result of Stage

2 is that the employer receives a curated set of final candidates, each vetted both by AI metrics

and human interviews, ready for final hiring decisions or on-site interviews. By integrating this

expert hiring stage, we ensure that the ultimate hiring decisions are informed by human

expertise and contextual judgment – aspects like cultural fit or nuanced technical insight – which

algorithms alone might miss, all while substantially reducing the burden on the company’s own

HR staff.

 1.2. Design goals
●​ Usability

Recruit4Me prioritizes a user-friendly and intuitive interface to ensure smooth navigation

for all users, including candidates, HR personnel, and experts. The system feature responsive

design, accessible functionality compliant with WCAG standards, and real-time

feedback through form validation and tooltips. Multi-language support and a built-in FAQ system

are expected to enhance user experience and accessibility, making the platform approachable

for a diverse audience.

●​ Reliability
The application is implemented to have a high reliability, which should be fault-tolerant.

Robust error handling and proper data management using ACID-compliant databases assist

these to make an advancement for reliability. Load balancers, failover servers and automated

backups with efficient fallback mechanisms are planned to be implemented to maintain an

uninterrupted service experience for the users.

●​ Performance
Performance optimization is a core part of Recruit4Me, with fast response times for key

features like login, CV parsing and getting candidate results. Asynchronous operations and

caching reduce server load, while database optimization ensures efficiency even with large

datasets. Stress testing guarantees the system can handle significant user traffic and heavy

workloads without degrading performance.

●​ Supportability
Recruit4Me is built with modularity and maintainability in mind, ensuring easy debugging,

updates, and enhancements. Comprehensive logging, monitoring, and documentation support

developers, while CI/CD pipelines and extensive test coverage enable safe and seamless

deployment of updates without disrupting user operations.

●​ Scalability
The application is designed to handle increased workload during peak times and

user-load through proper cloud integration (AWS, Google, Azure) and database optimization

methods such as sharding and replication. It supports horizontal scaling and microservices, to

ensure the system can manage growth of workload without affecting performance.

2. Requirements Details
Functional Requirements

Recruit4Me must support all steps of a two-stage AI-driven hiring process. Companies
(HR and hiring managers) need to create and manage job postings with required skills,
experience levels, and screening criteria. Candidates must be able to register, create profiles,
upload resumes, and apply to jobs. In Stage 1 (Automated Screening), the system automatically
parses each resume (using a resume parser or AI model) to extract skills and experience and
compares them against the job requirements. It then generates a customized screening test:
structured quiz questions and coding problems relevant to the job. For coding questions,
candidate code submissions are sent to the Judge0 code execution service for compilation and
automated evaluation. The system scores each candidate (combining resume-job match, quiz
answers, and coding results) and filters out those who fail the minimum threshold, producing a
shortlist. In Stage 2 (Expert Interview), shortlisted candidates are made available for human
experts. The platform should allow companies or contracted experts to schedule live technical
interviews (e.g. via an integrated Jitsi video session) with candidates. Interviewers can review
the candidate’s Stage 1 profile and then record qualitative assessments (e.g. teamwork,

communication) in the system. Throughout, the system must expose RESTful APIs for all
front-end workflows (user signup/login, job management, application status, test-taking
interface, interview scheduling, etc.) and enforce role-based actions (e.g. only HR/company
users can see all applicant scores, only candidates can take tests). System functionality also
includes notification (e.g. email alerts for application updates or interview invites) and reporting
(companies can view ranked candidate lists and test results).

Non-Functional Requirements

The system is designed to be responsive and usable: the web UI must be responsive
and intuitive, with clear workflows for the various user types (candidates, company users, HR
administrators) and form validation or tooltips in real-time. Accessibility (e.g. WCAG compliance)
and multi-language support must be added in order to accommodate multiple users. In terms of
performance, Recruit4Me must be able to process long-running tasks without locking out users.
Long-running operations (resume parsing, LLM scoring, code checking) have to be done
asynchronously or in the background so that API calls remain quick (e.g. page loads and submit
answers must be less than a few seconds). With Azure Cosmos DB, it is possible to achieve
low-latency data access (in single-digit milliseconds), which itself provides responsive UIs and
quick query results even during load. The system should also be reliable and fault-tolerant: a
breakdown in one component shouldn't take down the whole platform. This involves robust error
handling, retries, and data redundancy. Automatic backups and database replication (Cosmos
DB geo-redundant storage) ensure that data is not lost, and failover health checks (e.g.
redundant Kubernetes pods) ensure that services don't go down. Security and access controls
are top priority: everything must be communicated over HTTPS, and we have strict
authentication. We implement stateless JWT tokens with embedded user roles so that each API
request includes an encrypted token authenticating the user and authorizing them. Role-Based
Access Control (RBAC) enforces, for instance, users in HR can only create job listings,
company representatives can see that company's candidate pool and not others, and
candidates should not be allowed to view internal scoring data. All sensitive operations (e.g.
admin fixes, hiring needs modifications) must be logged for audit and must have rate-limits or
alerts for unusual usage. Scalability and maintainability are also key. The architecture must
accommodate user and data growth; for example, with microservices and container
orchestration (AKS), we can scale out the web/API servers horizontally during peak loads. We
design the data tier (Cosmos DB with MongoDB API, Azure Blob Storage for resume files) to
scale out as required. This allows for peak recruitment campaigns or concurrent code-test
submissions in volume without getting bogged down. We also prioritize clean, modular code
(with heavy logging and test automation) so that new features or future AI models will be easily
added. In short, the non-functional goals of the platform—usability, performance, reliability,
security, and scalability—directly benefit the two-stage recruiting environment, delivering a
smooth user experience and robust, scalable performance under real hiring loads.

2.1 Functional Requirements - Flow

2.1.1 User Management & Authentication

●​ User Registration & Profiles
○​ Candidates register with email, password, and basic profile (name, contact, CV

upload).
○​ Company users register under an organization, assign roles (HR manager,

expert).
○​ Multi-factor authentication (email verification code; optional 2FA).

●​ Role-Based Access Control (RBAC)
○​ Four primary roles: Candidate, HR Admin, Recruitment Expert, Company.
○​ Permissions matrix defines which API endpoints and UI views each role can

access.
○​ JWT tokens with embedded role claims, auto-expiring, refreshed via secure

endpoints.
●​ Profile & Organization Management

○​ Company users create & update Organization records (name, domain, logo).
○​ HR Admins can invite colleagues, assign or revoke roles.
○​ Candidates can link/unlink social profiles (e.g. GitHub, LinkedIn) for profile

enrichment.

2.1.2 Job & Application Lifecycle

●​ Job Posting Creation
○​ HR Admins define job title, description, required skills, preferred skills,

experience level, location, and application deadline.
○​ Ability to set custom screening thresholds and test configurations per posting.

●​ Job Listing & Discovery
○​ Public and private listing modes.
○​ Search by keyword, location, skill tags, salary range.
○​ Pagination and relevance sorting (weighted by match score).

●​ Candidate Application Workflow
○​ One-click apply: candidate’s profile and CV auto-attached.
○​ Email notification to candidate and HR team on submission.
○​ In the UI, candidates see “Submitted,” “Screening,” “Shortlisted,” “Interview,”

“Offer,” “Rejected” statuses.

2.1.3 Stage 1: Automated AI-Driven Screening

●​ Resume Parsing & Scoring​

○​ NLP Extraction: Education, skills, certifications, past employers, project
descriptions.

○​ Feature Engineering: University ranking lookup, skill frequency counts, project
domain matching.

○​ Scoring Model: Ensemble of rule-based filters (must-have skills) + ML ranker
(logistic regression or fine-tuned language model) outputs a fit score (0–100).​

●​ Structured Assessment Generation​

○​ Question Bank: Curated repository of technical & behavioral questions,
classified by topic and difficulty.

○​ Adaptive Selection: Based on fit-score, system selects 5–8 questions:
■​ 2 Easy (verify basics)
■​ 3 Medium (apply concepts)
■​ 2 Hard (design/algorithmic).

●​ Coding Challenge Evaluation
○​ Judge0 Integration: For each coding problem, candidate source is sent to

Judge0.
○​ Test Suite: 10–15 unit tests per problem (correctness, edge cases,

performance).
○​ Scoring: Pass rate (percentage of tests passed) + runtime efficiency (time to

pass).
●​ Text-Answer Evaluation

○​ LLM Scoring: Questions requiring explanations are scored via Azure OpenAI
(GPT-4) prompts.

○​ Returns structured JSON: { correctness: 0–10, depth: 0–10, clarity: 0–10 }.
●​ Aggregate Screening Decision

○​ Weighted sum: 40% resume, 40% coding, 20% text answers → overall score.
○​ Threshold (e.g. ≥ 65/100) → advances to Stage 2; else, automated “Thank you”

and optional feedback.

2.1.4 Stage 2: Pay-As-You-Go Expert Interviews

●​ Expert Marketplace
○​ Registered technical interviewers and HR consultants list their expertise areas,

hourly rates.
○​ Companies browse, invite, and schedule sessions.

●​ Interview Scheduling & Management
○​ Integrated calendar (Google/Outlook sync) and time-slot booking.
○​ Automated email/SMS reminders to candidate and expert.

●​ Live Interview Tools
○​ Embedded Jitsi video session with screen-share and whiteboard for

coding/design questions.
○​ Recording & transcription (for audit, internal review).

●​ Expert Feedback Collection
○​ Standardized evaluation form: technical depth, cultural fit, communication,

problem-solving.
○​ Free-text remarks.
○​ Scores auto-aggregated with Stage 1 results for final shortlist.​

2.1.5 Reporting & Analytics

●​ Recruiter Dashboard
○​ Real-time charts: number of applicants per job, pass rates, average scores,

funnel conversion.
○​ Drill-down by time period, location, skill tag, or demographic.

●​ Candidate Portal
○​ History of applications, screening results, interview feedback.
○​ Downloadable certificates of completion.

●​ Data Export & API
○​ CSV/Excel export of candidate lists, test results.
○​ REST API endpoints for external BI tools (Power BI, Tableau).

2.2 Non-Functional Requirements

2.2.1 Usability & Accessibility

●​ Responsive Design
○​ Mobile-first layout; automatically adapts to screen widths 320px–1920px.
○​ Touch-friendly controls.

●​ Intuitive Workflows
○​ “Wizard” steps for setting up new jobs, conducting assessments, and managing

interviews.
○​ Progress indicators, contextual help (tooltips, inline documentation).

●​ Accessibility Compliance
○​ Meet WCAG 2.1 AA standards: keyboard navigation, ARIA labels, color-contrast

ratio ≥ 4.5:1.

2.2.2 Performance & Scalability

●​ Latency Targets​

○​ < 200 ms for authenticated page loads (via CDN caching).
○​ < 50 ms for AJAX calls to fetch candidate scores.
○​ < 5 s end-to-end for Judge0 code evaluation (parallel test execution).​

●​ Throughput

○​ Handle up to 5,000 concurrent users.
○​ 1,000 simultaneous code submissions per minute.​

●​ Elastic Scaling

○​ Azure Kubernetes Service (AKS) auto-scales pods by CPU/memory usage.
○​ Cosmos DB automatically partitions data to maintain single-digit millisecond

reads/writes.

2.2.3 Reliability & Availability

●​ Uptime SLA ≥ 99.5%
○​ Azure availability zones for Kubernetes nodes and Cosmos DB replicas.
○​ Health probes and automatic pod restarts on failure.

●​ Disaster Recovery
○​ Daily backups of Cosmos DB and Blob Storage to secondary region.
○​ “Playbook” scripts for full infrastructure redeployment via ARM/Terraform.

2.2.4 Security & Compliance

●​ Data Encryption
○​ At-rest: Azure Storage Service Encryption and Cosmos DB TDE.
○​ In-transit: TLS 1.2+ for all endpoints.

●​ Authentication & Authorization
○​ JWT with RS256 signatures; short-lived access tokens (< 15 min), refresh tokens

(< 7 days).
○​ Fine-grained RBAC enforced by API gateway policies.

●​ Secret Management
○​ Azure Key Vault for API keys (Judge0, OpenAI), database credentials, JWT

private keys.
●​ Audit Logging

○​ Immutable audit trails of key actions (job creation, user role changes, score
overrides) stored in Azure Monitor logs and forwarded to a SIEM.

2.2.5 Maintainability & Observability

●​ Modular Codebase
○​ Microservice separation: each bounded context (User, Job, Assessment,

Interview, Reporting) in its own repo.
●​ CI/CD Pipelines

○​ GitHub Actions builds, tests, containerizes, and deploys to AKS on every merge
to main.

○​ Canary and blue/green deployment strategies.
●​ Monitoring & Alerting

○​ Application insights for performance telemetry.
○​ Prometheus + Grafana dashboards for container metrics.
○​ PagerDuty alerts for error rate spikes or resource exhaustion.

3. Final Architecture and Design Details

Recruit4Me employs a layered, cloud-native architecture. The UI layer is a web-based

single-page application (implemented in Angular) that provides different dashboards for each

role (candidate, recruiter, expert). It uses dynamic component rendering so that, for example,

candidates only see application and test-taking views, while HR users see job management and

candidate analytics panels. The UI communicates with the backend solely over REST APIs

(secured by JWT).

The Authentication layer is integrated into the API gateway: upon login, the backend

issues a signed JWT that encodes the user’s role (HR, company admin, candidate, etc.) and

user ID. Every subsequent request must present this token, and the service validates it and

enforces RBAC rules (e.g. “only users with Company role can create job postings”, “candidates

can only submit answers for their own applications”). This JWT-based auth avoids server-side

sessions and ensures stateless, scalable session management.

The Business Logic (Service) layer is implemented with MongoDB REST Framework.

This layer contains modular services for each functional domain: user/account management, job

and application management, assessment generation/evaluation, and interview scheduling.

Each service has its own set of REST endpoints. For example, the Assessment Service handles

Stage 1 workflows: it accepts a candidate’s resume and job ID, invokes the resume-parsing

component (which uses NLP or Azure Cognitive Services), and then generates and stores a set

of test questions. When the candidate submits answers, this service routes them

appropriately—text answers go to the LLM evaluator (Azure OpenAI), and code submissions go

to the Judge0 service.

The Judge0 integration is encapsulated as an external evaluation service. Judge0 is an

open-source, scalable online code execution system often used in coding-assessment

platforms. We host a Judge0 instance (e.g. on an Azure VM) and expose an API endpoint to it.

When a candidate submits code, the backend sends the source code and test cases to Judge0

via a REST call. Judge0 compiles and runs the code in a secure sandbox and returns test

results, which our service then records. By using Judge0’s proven infrastructure, we ensure that

running untrusted candidate code is isolated from our core system and can scale independently.

For AI-driven evaluation, we integrate Azure OpenAI (GPT-4). After coding tests, or for

any free-text answer, the backend sends the candidate’s answer and the question context to the

Azure GPT endpoint. The model (prompted or fine-tuned for our domain) returns a structured

score and feedback. For instance, GPT-4 can check if the candidate’s answer covers all

required points and return separate sub-scores (e.g. correctness, completeness, clarity). This

LLM-based scoring component plugs into the business logic layer and feeds results back into

the candidate’s overall evaluation.

The Database layer uses Azure Cosmos DB (with the MongoDB API) as the primary

datastore. Cosmos DB stores all structured candidate information: user accounts, job postings,

candidate profiles, application records, and test results. Its distributed, multi-region nature

provides automatic high availability and very low-latency reads/writes. (For example, a read of a

candidate’s scores or a job’s requirements typically complete in single-digit milliseconds.) Large

binary or semi-structured data—such as uploaded resumes and video interview recordings—are

kept in Azure Blob Storage (with hot/cool tiering and optional CDN) for cost-effective, scalable

file storage. We also use Azure SQL Database for certain relational aspects (e.g. if transactional

consistency is needed), and Azure Cognitive Search to index candidate skills and profiles so

that recruiters can quickly find top matches; these services complement Cosmos.

Infrastructure and Subsystems: All these components are containerized with Docker. We

run them in an Azure Kubernetes Service (AKS) cluster, which provides automated deployment,

scaling, and management. For example, each Django-based microservice is a separate pod,

and an Angular frontend pod serves the UI. We chose Standard D8s_v5 VM nodes (8 vCPUs,

32 GB RAM) to ensure ample compute for ML inference and web services. AKS lets us easily

add more pods when user traffic spikes (horizontal scaling) or roll out updates with zero

downtime (rolling upgrades). Sensitive data (API keys, JWT secrets) is kept in Azure Key Vault

and injected securely into pods. Communication between services within the cluster uses an

internal network, and ingress is secured via HTTPS/TLS. Role-based restrictions (e.g. only the

API gateway can talk to the Judge0 service) are enforced by network policies and by validating

JWT scopes in each service. Logging and monitoring (via Azure Monitor) are in place to detect

anomalies.

3.1. ML Based CV Evaluation

At the center of Stage 1 is the ML model that parses and evaluates CVs. This model

operates as a pipeline with multiple steps. First, when a resume is uploaded (in PDF or Word

format), the system extracts the raw text and applies Natural Language Processing to interpret

the content. Using techniques like entity recognition, the system identifies important entities and

sections in the resume (education, skills, companies, job titles, dates, etc.)​. It employs

domain-specific vocabularies and possibly pre-trained embeddings (e.g. language models

fine-tuned on resume data) to accurately recognize technical skills and credentials even if they

are presented in varied formats. Once key features are extracted, they are fed into a machine

learning evaluation engine. This engine consists of a trained classifier model that outputs a “job

fit score” for the candidate, broken down by category. The model has been trained on historical

hiring data or simulated data: for supervised learning, the team prepared input-output pairs

where inputs are candidate features (skills, experience, etc.) and outputs could be an

expert-defined rating of candidate quality or a hire/no-hire label​. Modern approaches could

involve an ensemble of algorithms – for example, a combination of a rule-based matching (to

ensure essential requirements are met) and an ML-based ranking (to sort the remaining

candidates by predicted suitability). We are giving scores based on factors like university

ranking, depth of skills, project quality, and so on, indicating a scoring methodology that

quantifies each dimension of the CV. All these factor scores are aggregated into an overall

profile score​. Candidates are categorized (or tagged) based on this profile – for instance,

categorized as “Highly Qualified” vs “Moderate match” vs “Unsuitable,” or simply sorted in

descending order of their score. Such categorization helps in managing candidate pools: the

system could automatically group candidates by skill match percentage, or highlight which

specialized role(s) they best fit, given that Recruit4Me is initially focused on IT roles like Data

Scientist, ML Engineer, etc.

A notable aspect is our project’s ability to match candidates to companies’ specific

requirements. When a company creates a job listing, they input required and preferred skills,

experience level, and other criteria. The ML evaluation engine uses these as parameters to

adjust scoring. For example, a candidate skilled in Python might score very high for a Data

Scientist role requiring Python, but lower if the job is for a Java Developer. This dynamic

matching ensures the scoring is context-aware. The output of this ML model is not just a binary

keep/discard, but a nuanced profile that can be reviewed. The system provides a job suitability

score and ranking for each candidate​, which the platform can present on a dashboard to the

employers. By translating a complex resume into a set of standardized metrics, the tool enables

quick comparisons across candidates on an “apples-to-apples” basis​.

From an architectural perspective, this ML component is built in Python, utilizing

frameworks like PyTorch and TensorFlow for model training​. We are using a pre-trained model (

LLaMA 70B) as a starting point and fine-tuning it on their recruitment data and additionally

fine-tuning gpt4o on Azure Services​ to get best results. The training pipeline involves data

collection and labeling, followed by fine-tuning on a pre-trained model and even reinforcement

learning to continuously improve the model​. There is also a feedback loop: as more candidate

data flows through the system and as human experts in Stage 2 provide feedback on

candidates, those outcomes are fed back into updating the ML model​. We are using a

continuous fine-tuning approach provided by the Azure GPT Architecture and keep putting on

the performance of the model by this new data.This continuous learning approach means the

resume screening model should get more accurate over time, adapting to what we can consider

a “successful hire.”

3.2. Structured Question Selection and Adaptive Testing

A key innovation of our platform is the structured, company-driven question selection

system, which ensures a customizable yet standardized approach to candidate evaluation.

Rather than relying on AI to generate interview questions dynamically, we provide companies

with a pre-defined, high-quality dataset of technical questions. Companies using our platform

can customize the assessment process by selecting specific question topics (e.g., "Greedy

Algorithms," "Binary Search," "Dynamic Programming") and difficulty levels (Easy, Medium,

Hard) tailored to their hiring needs. This allows employers to create a flexible, role-specific

technical assessment while maintaining consistency across candidate evaluations.

When a candidate progresses past the CV screening stage, they are prompted with a

structured set of questions selected based on the hiring company's criteria. The company has

full control over which topics are assessed, ensuring that the questions align with the job

description and the skills required for the role. Unlike AI-generated question banks that might

produce inconsistent or overly generic prompts, our curated dataset provides a balanced mix of

theoretical, problem-solving, and applied coding questions, making the evaluation process both

precise and relevant to real-world engineering tasks. In edge cases we have a question dataset

in Azure VM to handle these.

Since our platform relies entirely on Microsoft Azure, we designed our deployment
architecture to be cloud-native, ensuring high availability, scalability, and secure data
management. Our solution requires a balance between compute power for ML inference,
database performance for handling user data, and storage capacity for resumes and interview
transcripts.

The backend and frontend is deployed on Azure Kubernetes Service (AKS), allowing for
efficient containerized deployment and scalable management of web services.

Instance Type: Standard D8s v5

●​ 8 vCPUs, 32 GB RAM
●​ 512 GB SSD (Premium Storage) for fast disk access
●​ Supports containerized deployment with Docker & Kubernetes
●​ Cost: ~$0.64 per hour (Region: EAST US2)

For database management, we use Azure Cosmos DB (MongoDB API) to store
structured candidate profiles, job listings, and recruitment history. Cosmos DB provides
low-latency access to data, allowing fast retrieval of candidate information for AI-driven
evaluations.

Azure Cosmos DB (MongoDB API)

●​ 1 TB storage, scalable to demand
●​ Geo-redundant backups for reliability
●​ Cost: ~$0.025 per GB per month

For our Machine Learning model(GPT 4o and LLAMA 70B), we are using Azure ML Compute
Instance.

Instance Type: Standard NC6s v3 (GPU-enabled)

●​ 6 vCPUs, 112 GB RAM, 1 NVIDIA Tesla V100 GPU (16GB VRAM)
●​ 1 TB SSD for storing model artifacts and candidate data
●​ Cost: ~$1.50 per hour (Region: EAST US2)

This instance is dynamically allocated only when active candidate evaluations are
running. When not in use, it scales down automatically, reducing costs. Considering other costs
such as Azure Image Extraction and Cognitive services, we are assuming that we will have a
500$ estimated cost each month. Deploying and using open source LLM models for evaluating
speech would help us decrease our costs by %15, which are in future plans to be completed.

3.3. Persistent data management
Managing a significant amount of both structured and unstructured data, such as test

results, video interview transcripts, candidate resumes, and AI-generated assessments, is part
of our senior project. We use Microsoft Azure for cloud-based data management, guaranteeing

scalability, security, and high availability, in order to effectively store, process, and retrieve this
data.

3.4. Database and Storage Solutions
Unstructured data, including test submissions, video interview recordings, and candidate

resumes (in PDF and DOCX formats), are stored using Azure Blob Storage. Hot, cool, and
archive tiers are among the tiered storage options offered by this storage solution, which
maximizes cost effectiveness while guaranteeing quick access when required. Additionally,
Azure Blob Storage integrates with Azure Content Delivery Network (CDN) to improve
performance for users and speed up data retrieval.​
​ We use Azure SQL Database and VM to store structured data, including test results,
interview assessments, candidate profiles, and recruitment progress. By guaranteeing ACID
compliance, this relational database offers data transactions consistency and integrity. High
availability and auto-scaling capabilities guarantee that the database can manage varying
workloads during periods of high recruitment.

Semi-structured data, such as activity logs, dynamically generated AI replies, and
metadata from the hiring process, are also stored in Azure Cosmos DB. Flexible schema
management and multi-model database formats, including document and key-value storage, are
supported by the NoSQL architecture. Low-latency access across several regions is made
possible by its worldwide distribution capabilities.

To enhance search and retrieval performance through full-text search, semantic ranking,
and AI-powered candidate profile indexing is our goal by using Azure Cognitive Search.
Therefore, it becomes quite easy for HR to search and find out the candidates who are best
suited for their job openings mainly based on their matching qualifications, experience, and
talents. Additionally, to make the search process even more relevant, and to rank the results
better, we can add machine learning models to the search service.

3.4.1. Data Processing and AI Model Deployment
Our AI model for HR automation is OpenAI models on Azure and VMs. Once the model

is trained and deployed in this manner, machine learning workloads are running with optimized
performance. Additionally, the Azure Machine Learning Service is used for model versioning,
automated hyperparameter tuning, and MLOps integration.

Azure Functions is used to implement automation for various data processing tasks such
as document parsing, test result evaluation, AI-driven resume screening, etc. This serverless
compute solution which empowers event-driven execution minimizes continuous infrastructure
management. Running of Functions is done when a candidate submits a new application, runs
AI-based evaluations, and updates the recruitment status change.

3.4.2. Security, Compliance, and Data Integrity
All the stored data is protected from hacking, phishing, and other cyber threats by using

Azure Key Vault in the encryption process. On the other hand, Role-Based Access Control
(RBAC) is the foundation of all security to guarantee the employer's trustworthiness in dealing
with candidate’s data. To make it even more secure, Azure Active Directory (Azure AD) provides

access to acceptable and secure authentication and access along with multi-factor
authentication (MFA) for added security.

Our approach to data management is furthermore aligned with the GDPR and privacy
protection acts and thus, ensure that candidate data is only used in privacy and law abidance
ways. Analysis and monitoring by Azure Monitor and Azure Security Center act as sources of
information about data traffic and the systems’ functionality as well as the performance of the
relevant system. Using the infrastructure running in Microsoft Azure, we ensure a smooth
transfer of candidate data, employ AI driven workflows to the offing, and boost safety in handling
HR sensitive data.

 3.5. Access Control and Security

​ Accessing only the authorized resources through the implementation of an effective
access control system is one of the vital goals of the HR automation system. Access control is
based on the role (RBAC) and token-based authentication which check if someone is a real
user or not, respectively. As the case is, for complete security protocols, the system employs a
JSON Web Token (JWT) authentication process the function of which is to test every code
containing the possible security breaches before providing access to the API.​

Authentication and Role-Based Access Control

The system assigns a role to each user at the time of registration or system entry with a
specific set of privileges. When the login is successful, they are provided with an encrypted JWT
that contains the role followed by this information which is used as a check on every request.
The platform sorts out HR personnel, company representatives, and candidates to make sure
each one interacts only with the data and features associated with their respective roles. HR
personnel are endowed with the following capabilities: They are allowed to assess employment
licenses, manage intakes, and set the job intake date. In any case, only by working within the
boundaries of candidate management, they are able to do these tasks. Company
representatives have admin rights where they can create or rearrange job advertisements,
parametrically define exam going criteria for a standpoint, conduct the human resources pick up
role, and not adjust project appraisal by HR but they are not authorized to modify candidate
ratings registered by HR. Candidates mainly can only take tests, make applications, and attend
interviews without allowable access such as company configurations or internal score reports by
the company.

Security Measures and Restricted Access

To ensure the integrity and prevent unauthorized alterations to the system, important
operations are enforced with multi-layered security techniques. Those sensitive activities, e.g.,
hiring criteria upgrades, test results overrides, company's confidential data access, are entered
in logs and actively monitored. Unauthorized attempts provoke security alerts, and failure to
enter the right credentials result in the temporary suspension of access.
The system also protects the intercommunication with other services such as Judge0 online
compiler and ML-based test evaluation model. Only the platform's direct requests with the
services have the right to interact with them, such that the common data submissions and

evaluations remain under the full command and are not tampered with. API endpoints executing
tests and candidate evaluation, using access tokens, are hardened against unauthorized use,
preventing unauthorized running of test cases or data tampering.

Data Protection and API Security

Moreover, to strengthen the security of data transfer, all the interactions between the
client, the server, and the external services are carried through HTTPS and shielded APIs.
Confidential user data, i.e., candidate scores, interview recordings, and CV data, is defended
with a strict database access control policy, which guarantees that only authorized personnel
are able to handle or change the stored information. Furthermore, such policies of token
expirations enable the system to automatically invalidate a session after a certain time of
inactivity, which in turn makes it impossible for unauthorized users to access the system due to
token leakage. Integration of RBAC, JWT authentication, API security and monitoring
mechanisms in the system make for the data of hiring's protection and confidentiality and
resistance to unauthorized access and manipulation. Thus the hiring process is kept on the right
track.

 3.6 Subsystem Services

3.6.1 UI Layer
Recruit4Me is aimed to be delivered with an elegant and useful user interface. The UI

layer aims to increase ease of use, by favoring interactive components and coupling relevant
panels into the same pages. Recruit4Me aims to avoid complex UI which hinders
comprehension of the application. Conditional rendering technique is used to enable different
types of users, namely company, interviewer and candidate to perform their respective use
cases.

3.6.2 Auth Layer
​ Recruit4Me aims to protect the confidential data of users, i.e. email, password and
personal information. This layer aims to prevent injections, penetrations etc. security attacks that
can happen with Azure Key Vault and Azure Networking Services.

3.6.3 Business Logic(Service) Layer
Naturally, RESTful endpoints are exposed to interact with backend services and the

database instance(s) of our application. While developing these endpoints, we followed crucial
software design patterns such as obeying law of demeter and meaningful coupling to adapt
quickly to future changes and nicely persist our codebase.

Different service layers exist to couple functionality regarding roles, and other entities

such as interviews and job listings.
​

3.6.4 Database Layer
​ Database persistence is a must for Recruit4Me. Since the initial design of our ER
diagram and the database schema, common database development principles have been
applied. Moreover, various triggers are used to enhance the database.

3.6.5 Jitsi Instance Layer (Hosting Interviews)
​ Recruit4Me utilizes Jitsi, which is an open source platform enabling conducting online
video meetings. Jitsi allows self hosting in Ubuntu servers. Recruit4Me hosts a Jitsi instance to
enable interviewer experts to conduct meetings with candidates. The website for Jitsi instance is
accessible through all ip addresses by default, but when creating and joining meetings users are
required to authenticate through Jitsi’s user interface with credentials given by Recruit4Me.

​ ​ ​ ​ ​ (Figure 4.5.1)

​ The Jitsi deployment for Recruit4Me is periodically invoking an endpoint exposed solely
for this instance in the backend service layer, to fetch host credentials. Users use these
credentials to participate in meetings. Jitsi UI is embedded in the main application, allowing
users to remain at the original website (Figure 4.5.1).

Upon meetings are conducted, each participant is asked to evaluate their experience.
Upon getting acceptable response from participants, meetings are marked as terminated and
interview experts are awaiting payment. In case an issue arises, participants can state this
during meeting evaluation, and if necessary logs in the Jitsi instance regarding meeting details
(e.g join, leave, create times) can be manually checked. Later this process can be automated as
well (Figure 4.5.1).

4. Development and Implementation Details
This section explains how we implemented the system components.

Frontend - We chose React JS for component-based UI, using Material-UI for a responsive
design. The app communicates with backend APIs over HTTPS and handles user session state
(storing the JWT in browser storage securely). Key pages include: Login/Register, Employer
Dashboard (job and candidate list), Candidate Profile page, Expert Dashboard (assigned
interviews, question manager), and an Admin panel. Forms include client-side validation (e.g.
email format, required fields). We also implemented client-side pagination for long lists (e.g.
showing 20 candidates per page), and lazy loading of images. The frontend consumes Azure
AD’s login widget (MSAL for single sign-on) to authenticate. During development, we used
React Router for navigation and Redux for state management. We integrated rich text editors for
job descriptions and question entries. CSS is structured with BEM naming to maintain clarity.
Accessibility features (tab order, alt text, aria-labels) are implemented in accordance with WCAG
guidance. We also implemented error boundaries so the UI can gracefully show error messages
if an API call fails. The source is organized into modules (Auth, Employer, Candidate, Expert,
Common). Build and deployment use a CI/CD pipeline: on each commit, a GitHub Action runs
tests and then deploys the build artifact to Azure Static Web Apps, which serves the frontend
under HTTPS.

Backend - The backend is built with Node.js, containerized with Docker. We structured it as
multiple microservices (as in the design). Each service has its own code repository and
Dockerfile, allowing independent development. Key aspects:

●​ API Design: All services expose RESTful endpoints (e.g. /candidates, /jobs, /interviews).
The endpoints follow standard HTTP status codes. We implemented Swagger/OpenAPI
documentation for clarity. The API gateway (or a reverse proxy) routes requests to the
correct service based on URL patterns, and injects the authentication token for
verification.

●​ Authentication Service: We integrated with Azure AD B2C. The service uses the
passport-azure-ad library to validate JWT tokens. On login, we map AD groups/roles to
our internal RBAC (e.g. “Employer” group → employer-role). JWTs have short expiration
times for security; the client uses refresh tokens to renew.

●​ Business Services: Each microservice uses an internal library of data-access objects
(DAOs) to talk to the database. We used Sequelize ORM for Azure SQL and the Azure
SDK for Blob Storage. Business logic checks enforce all requirements: for instance, the

Interview Service checks that only the assigned expert can submit an interview result.
We used Mocha/Chai for unit tests and Postman for integration tests.

●​ LLM Integration: For our fined model, we utilized Azure OpenAI Service (GPT-4o) and
Meta LLaMA 3. We fine-tuned LLaMA 70B on a corpus of anonymized resumes and job
descriptions. The fine-tuning pipeline used PyTorch on the AzureML compute. Once
trained, the model was deployed as a managed endpoint. The Candidate Service sends
an HTTP request to this endpoint with the resume text; the model returns parsed fields.
We also implemented logic to handle prompts for the model (e.g. “List the degrees and
skills mentioned”), ensuring the model operates in a predictable manner. The system
respects token limits by trimming excess text. In testing, we validated that the LLM
parsing achieved high accuracy on benchmark CVs. In addition, we explored using an
LLM to generate interview questions. Using GPT-4o via API, the Question Service can
propose new questions based on a job’s keywords. This feature is optional and was
implemented as an asynchronous task, not part of the mandatory pipeline.

●​ Data Storage and Access: The application connects to Azure SQL using a secure
connection string (with Azure Key Vault). Database migrations are scripted via a tool
(e.g. Liquibase) for schema changes. Blob Storage is accessed via the Azure SDK – for
example, when a resume is uploaded, the backend streams the file directly to a Blob
container, then stores a reference URL in SQL. We enabled soft-delete on blobs in case
of accidental deletion.

●​ Logging and Monitoring: We implemented centralized logging using Azure Monitor and
Application Insights. Each service logs errors and key events (e.g. “Interview scheduled:
ID=123”). Health probes (HTTP endpoints) are defined for each microservice so that
Kubernetes (AKS) or App Service can auto-restart failed pods.

LLM Integration Details Large Language Models are at the core of our system’s intelligence.
We fine-tuned a version of LLaMA 3 (70B) on recruitment data, and we also configured access
to GPT-4o for on-demand tasks. For resume parsing, the model input is the plain text of the
candidate’s resume; the output is a JSON with fields (e.g. “education”: [“B.Sc. Computer
Science”], “skills”: [“Python”, “Angular”], “years_experience”: 3, etc.). It is done by the document
intelligence service of Azure. To train the model, we used Azure GPU instances and datasets of
labeled resumes. We took care to handle privacy (removing PII in training data) and to evaluate
the model’s fairness. For question generation, we send a prompt like “Generate a
medium-difficulty coding interview question for a Java developer.” The model returns a new
question string. Experts can review and edit any AI-generated question before use. We also
integrated Azure Cognitive Services for minor tasks: e.g. Language understanding (to detect
English vs other languages) and OCR for scanned resumes. However, the main parsing is done
by the LLMs. Finally, for scalability, we set up Azure Kubernetes Service (AKS) clusters with
horizontal pod autoscaling for the LLM endpoints. This ensures that during peak resume-upload
periods (e.g. after a job posting), the model can handle bursts.

​

5. Test Cases

Test-ID T-1 Category CV Processing Severity High

Objectives Verify that the system correctly extracts relevant information (name,
experience, skills, education) from various PDF’s.​
Edge Cases: CVs with images, scanned documents, missing sections.

Steps Upload differently organized CV PDFs.
The system extracts and structures the data.
Compare extracted data with the actual CV content.

Expected Extracted data should match at least 95% of the actual CV information.

Date-Result 28.02.2025 - Information from various formats of CVs have been extracted
successfully.

Test-ID T-2 Category Model Evaluation Severity High

Objectives Ensure that the model correctly assigns different scores for junior, mid, and
senior candidates.​
Edge Cases: CVs with similar experience but different education levels or
vice versa.

Steps Submit three CVs for the same role, one for each level (junior, mid, senior).
Retrieve the model’s score for each candidate.
Compare the results with expected values.​
Repeat this process for multiple occasions.

Expected Senior-level candidates should score higher than mid-level, and mid-level
candidates should score higher than junior.

Date-Result 29.02.2025 - Initial trial of different levels has shown accuracy.

Test-ID T-3 Category Model Validation Severity High

Objectives Validate that the model correctly identifies when a candidate applies for a
role unrelated to their experience.​
Edge Cases: CVs with mixed experience across multiple fields.

Steps Submit a Data Scientist CV for a Cybersecurity Engineer position.
Observe the model’s response.

Expected The system should fairly evaluate the CV based on the level, junior may

get a high score, whereas senior can get lower.

Date-Result 01.03.2025 - In senior level CVs model answers with a lower experience
and skill score based on the job explanation, however junior level CVs are
evaluated higher as it is normal to have a junior inexperienced.

Test-ID T-4 Category Frontend-Backend
Model Integration

Severity High

Objectives Ensure that the frontend correctly displays the model’s evaluation score
and integrate with it.​
Edge Cases: Model API delay, incorrect frontend parsing of the score.

Steps Submit multiple CVs for evaluation.
Check if the frontend correctly retrieves and displays the score.

Expected The frontend should show the same score returned by the model.

Date-Result 5.03.2025 - Scalability and stress testing is successful on model

Test-ID T-5 Category Candidate Ranking Severity High

Objectives Validate that the ranking of candidates updates dynamically when a new,
better candidate is added.

Steps Submit a highly qualified candidate.
Observe if the system adjusts the ranking accordingly.

Expected The new candidate should be placed in a higher rank, pushing down less
qualified candidates.

Date-Result 1.05.2024 - Successful

Test-ID T-6 Category Filtering Feature Severity Medium

Objectives Ensure that HR users can filter candidates based on experience or other
skills.​
Edge Cases: Gaps in employment history, freelancers with multiple
short-term contracts.

Steps Apply a filter for candidates with e.g. 5+ years of experience.
Check if only qualified candidates are shown.

Expected Only candidates with 5+ years of experience should appear in the filtered
results.

Date-Result 22.04.2025 - Sucessful

Test-ID T-7 Category AI Question
Generation

Severity High

Objectives Validate that the system generates relevant interview questions based on
the job role and CV content.​
Edge Cases: CVs with multiple roles, missing skill descriptions.

Steps Submit a DevOps Engineer CV.
Observe the generated interview questions.

Expected Questions should be role-specific (e.g., Kubernetes, CI/CD pipelines) and
tailored to the candidate’s experience.

Date-Result 22.04.2025 - Questions are generated based on specifications

Test-ID T-8 Category Test
Evaluation

Severity High

Objectives Ensure that coding assignments are evaluated properly​
Edge Cases: Compiler issues

Steps Upload a code response.

Expected Judge0 should return the result properly based on test cases which work
in Azure VM.

Date-Result 22.04.2025 - Successful

Test-ID T-9 Category System
Performance

Severity High

Objectives Measure response time for processing a batch of 1000 CVs.
Edge Cases: High server load, large file sizes.

Steps Submit 1000 CVs in a single request.
Measure time taken for processing.

Expected System should process all CVs within acceptable time limits (e.g., under 5
minutes).

Date-Result 22.04.2025 - Model responded immediately to all candidates.

​
​
​

​

Test-ID T-10 Category Security Severity High

Objectives Ensure that unauthorized users cannot access candidate data or system
functions.​
Edge Cases: Token expiration, session hijacking attempts.

Steps Attempt to access candidate scores without logging in.
Try logging in as a candidate and accessing HR data.

Expected Unauthorized users should be blocked from restricted data.

Date-Result 27.02.2025 - Role based login is working correctly, candidate is not shown HR
or company private data or vice versa.

Test-ID T-11 Category Functional Severity High

Objectives Ensuring user will upload correct type of document as a resume

Steps 1-Inform the user about the accepted file type
2-Enabling user to upload the file
3-If user uploads correct file type, then user will be informed
4-If user tries to upload something different file type, warn the user about the
expected file type

Expected User must not be able to upload any file type except pdf

Date-Result 23.02.2025-Successful

Test-ID T-12 Category Functional Severity High

Objectives Ensuring that user will upload correct file type as an image

Steps 1-Warn the user about the accepted file type
2-Allow user to select the file
3-control the file
4-If the image is .png or .jpeg, then user is informed about the success of the
upload
5-If the file is different than mentioned, user is informed that operation is failed

Expected User should only upload .jpeg or .png

Date-Result 2.3.2025 - Successful

​
​
​

​

Test-ID T-13 Category Functional Severity High

Objectives Send mails to reset password

Steps 1-Ask user an input his/her new password
2-Ask them to type the password again
3-Ask them to type the verification code
4-If the new password and retype password don't match, send appropriate
warning message
5-If verification code is not true, send appropriate message
6-If the retyped password is match with the new password and verification
code is true, then change the password and send appropriate message

Expected If the conditions satisfied, user can change its password

Date-Result 2.3.2025 - Successful

Test-ID T-14 Category Functional Severity High

Objectives Send mail to verify the account

Steps 1-User enters his/her email to register
2-Verification code is sent
3-If the user correctly enters the code, then user account will open
4-If the user not correctly enters the code, then appropriate message is sent

Expected If the condition satisfied, user can open new account

Date-Result 2.3.2025 - Successful

Test-ID T-15 Category Functional Severity High

Objectives UI components should look fine on different screen

Steps 1-Develop the screens
2-Test them on different monitors

Expected In different-sized monitors, screens should look delicate and not hinder the
functionality.

Date-Result 1.05.2025 - Every screen sees pages based on dynamic width and height.

Test-ID T-16 Category Non-Functional Severity High

Objectives User should not wait for too long for the functionalities

Steps 1-Develop the functionalities
2-Measure the time
3-If the waiting time is too long (5-30 seconds, depend on the functionality)
then reconsider the implementation

Expected All functionalities should not exceed the boundary time

Date-Result 1.05.2025 - For small deployment the durations are acceptable i.e. 30
seconds maximum.

Test-ID T-17 Category Functional Severity High

Objectives Verification code should be generated randomly

Steps 1-The code generating random numbers tested several times
2- Generated codes are observed

Expected No obvious relation between those code sequences is found

Date-Result 2.3.2025 - Successful

Test-ID T-18 Category Functional Severity High

Objectives Verification code should be stored

Steps 1-Generated numbers are stored in database
2-Those generated numbers should match with the users

Expected Generated sequences are observable in the database

Date-Result 2.3.2025 - Successful

Test-ID T-19 Category Functional Severity High

Objectives Verification code should be deleted in database after 5 minutes

Steps 1-Generated numbers stored in the database
2-5 minute after generation, the code must be deleted in the database

Expected Generated codes should be deleted after 5 minutes

Date-Result 2.3.2025 - Successful

Test-ID T-20 Category Functional Severity High

Objectives Ensure candidates, HR experts, and company representatives can
successfully register and log in.

Steps 1.Navigate to the registration page.
2.Fill in the required details (name, email, password, role selection).
3.Submit the registration form.
4.Check for a confirmation email.
5.Log in using the registered credentials.
6.Verify successful redirection to the correct user dashboard.

Expected Users can register and log in without issues. Incorrect credentials should
result in an “Invalid credentials” error message.

Date-Result 1.05.2025 - Successful

Test-ID T-21 Category Functional Severity High

Objectives Ensure company representatives can successfully post a job listing

Steps 1.Navigate to the "+" sign to the section for “Add New Job”.
2.Fill in all required fields (job title, company, location, requirements, etc.).
3.Submit the form.
4.Verify that the job appears correctly in the “Jobs” section.
5.Try editing and deleting the job post.

Expected The job post should be created, displayed, editable and deletable

Date-Result 10.04.2025 - Successful

Test-ID T-22 Category Functional Severity High

Objectives Ensure candidates can apply for job listings

Steps 1.Navigate to the “Jobs” page.
2.Select a job and click "Apply."
3.Upload a resume and enter additional required information.
4.Submit the application.
5.Verify that the application appears in the candidate's "Results" section.
6.Verify that the application appears in the employer’s "Jobs" section.

Expected Candidates should successfully submit applications and employers should be
able to see them.

Date-Result 10.04.2025 - Successful

Test-ID T-23 Category Functional Severity High

Objectives Ensure HR Experts can schedule interviews with candidates

Steps 1.HR logs in and accesses the list of applicants.
2.Selects a candidate and clicks “Schedule Interview.”
3.Chooses a date and time, adds interview details, and confirms.
4.Candidate receives an interview invitation notification.
5.Candidate accepts or declines the interview.

Expected Scheduled interviews should be visible to both HR and candidates,
notifications should be correctly sent.

Date-Result 10.04.2025 - Successful

Test-ID T-24 Category Functional Severity Medium

Objectives Ensure candidates can efficiently search and filter jobs

Steps 1.Navigate to the “Jobs” search page.
2.Use the search bar to find a job by title or company name.
3.Apply filters (location, company, etc.).
4.Verify that results update based on applied filters.
5.Reset filters and ensure all jobs reappear.

Expected Search and filtering should return accurate results and not cause errors.

Date-Result 10.04.2025 - Successful

Test-ID T-25 Category Functional Severity High

Objectives Ensure HR Experts can review and manage job applications

Steps 1.HR logs in and navigates to the "Jobs" section.
2.Selects an application to view details.
3.Adds notes or comments to the application.
4.Changes the application status (e.g., "Under Review," "Accepted,"
"Rejected").
5.Verify that the candidate is notified about the status change.

Expected HR should be able to review, update and manage applications and candidates
should be notified about these changes.

Date-Result 22.04.2025 - Successful

Test-ID T-26 Category Functional Severity Medium

Objectives Ensure candidates can edit and update their info and profile

Steps 1.Candidate logs in and navigates to the "Profile" section.

2.Updates personal details (name, contact information, etc.).
3.Uploads a new resume or replaces the existing one.
4.Saves changes and logs out.
5.Logs back in and verifies that the updates are saved.

Expected Candidates should be able to edit their profiles and changes should be saved
and reflected manually.

Date-Result 24.04.2025 - Successful

Test-ID T-27 Category Non-
Functional
(Performance)

Severity High

Objectives Ensure system can handle high traffic without crashing

Steps 1.Simulate multiple users (candidates, HR, company representatives) logging
in simultaneously.
2.Perform job searches and apply for jobs concurrently.
3.Observe response times and system behavior.

Expected The platform should remain responsive and stable.

Date-Result 25.04.2025 - Successful

Test-ID T-28 Category Non-
Functional
(Security)

Severity High

Objectives Ensure passwords are securely stored and managed.

Steps 1. Attempt to log in using an incorrect password multiple times.
2. Attempt to retrieve a password using the "Forgot Password" feature.
3. Verify that password reset links expire after a set time.

Expected Secure password management should be enforced and working.

Date-Result 29.03.2025 - Successful

Test-ID T-29 Category Non-
Functional
(Accessibility)

Severity Low

Objectives Ensure platform meets accessibility standards

Steps 1.Enter and tab buttons should work on the keyboard.

2.Verify color contrast and font sizes for readability.
3.Check if images can be easily seen and readable.

Expected The platform should be accessible.

Date-Result 10.04.2025 - On multiple screens, the readability is clear.

Test-ID T-30 Category Functional Severity High

Objectives HR experts should be able to download the resume of the candidates

Steps 1-Required UI elements are created
2-After clicking the button, resume should be downloaded

Expected Resume is downloaded in HR computer

Date-Result 23.02.2025 - Successful

Test-ID T-31 Category Functional Severity High

Objectives Companies must be able to create job listings.

Steps 1-) Tested via sending curl through terminal
2-) Tested the linkage to the frontend via interacting with relevant UI

Expected Job listings are created by companies

Date-Result 02.02.2025 - Successful

Test-ID T-32 Category Functional Severity High

Objectives Companies create interviews for job listings and assign/manage interview
participants

Steps 1-) Tested via sending curl requests
2-) Tested by interacting with with relevant UI

Expected Companies can create meetings for having interviewers assess candidates.
Each meeting will be specific for a candidate. An interviewer can have
multiple experts as participants, but only a specific interviewer will be
responsible for scheduling.

Date-Result 05.02.2025 Successful

Test-ID T-33 Category Functional Severity High

Objectives Hosting meetings through Jitsi, by having our own deployment instance.

Steps Joined from different machines on our AWS EC2 instance’s URL, and
successfully participated in meetings we created.

Expected Meetings can be created and participated by users through Recruit4Me’s Jitsi
instance.

Date-Result 18.02.2025 - Successful

Test-ID T-34 Category Non
Functional
(Logs)

Severity Medium

Objectives Accessing logs of interviews, for tracking who joined meetings when
necessary.

Steps 1-) Configuring cfg.lua file to print logs
2-) Manual inspection through the Jitsi instance

Expected Log files can be accessed manually when an issue arises by end users.

Date-Result 26.02.2025

Test-ID T-35 Category Non
Functional

Severity High

Objectives Configure Jitsi to only enable Recruit4Me interviewers to create meeting
rooms, and automate fetching host credentials to Jitsi from backend.

Steps 1-) Wrote a mock lua script imitating data sent from backend to Jitsi.
2-) Execute the script in Jitsi, to see if hosts are registered.
3-) Created rooms by using newly registered host credentials

Expected The script must register new interviewers’ credentials periodically

Date-Result 27.02.2025 - successful

Test-ID T-36 Category Non
Functional

Severity Medium

Objectives User passwords must be hashed to reduce leakage in case of database
interception.

Steps 1-) Implemented hashing for registration and login comparison
2-) Tested via interacting application’s UI and inspecting database entries

Expected The passwords must stored as hashed

Date-Result 12.02.2025 (Successful)

Test-ID T-37 Category Functional Severity Medium

Objectives Candidates applied to a job listing must be fetched through database, and
user must be able to filter out rejected or pending applications

Steps Tested via sending curl

Expected Candidate data must be returned correctly from the backend

Date-Result 06.02.2025 (Successful)

Test-ID T-38 Category Functional Severity Medium

Objectives Companies must be able to send hire invites to interviewer experts, by
specifying an amount of payment per interview.

Steps Tested via sending curl

Expected Companies’ requests must be successfully registered to the database

Date-Result 24.02.2025 - Successful

Test-ID T-39 Category Functional Severity Medium

Objectives Interviewers must be able to accept or reject hire invites sent by companies.
Upon rejection, they should be able to specify a text response. And with
respect to that rejection, the company could reoffer a new hire invite.

Steps Tested via sending curl.

Expected Interviewers can evaluate hire invites, and companies can resend invites
accordingly.

Date-Result 25.02.2025 - Successful

​

Test-ID T-40 Category Functional Severity High

Objectives Ensure that HR personnel and company representatives can only access
candidate data relevant to their job listings and cannot view or edit
applications outside their authorization scope.

Steps HR logs in and navigates to the applicant list for a job posted by their
company.
Attempts to view, edit, or shortlist candidates from a job posting created by
another company.
Attempts to directly access a candidate’s data by modifying API requests

(e.g., changing job_id in the request URL).
Company representatives try to access candidate profiles that belong to other
companies' job postings.
Monitor the system logs for unauthorized access attempts.

Expected HR personnel should only access candidates applying to their company’s job
listings and not those from other companies.
Unauthorized API requests should return an “Access Denied” (403 Forbidden)
error.
Logs should capture unauthorized access attempts for auditing purposes.
No candidate data should be leaked to unauthorized users.

Date-Result 9.3.2025 - Successful

Test-ID T-41 Category Security Severity High

Objectives Ensure that API rate limiting is enforced to prevent abuse.

Steps Attempt to send a large number of requests (e.g., 1000 API requests in a
short period).
Monitor system response to detect throttling mechanisms.
Ensure that excessive requests return an appropriate HTTP 429 error.

Expected The system should throttle excessive API calls and prevent abuse.

Date-Result 1.04.2025 - System can handle large number of request

Test-ID T-42 Category Functional Severity Medium

Objectives Ensure job postings expire after a set duration and are no longer available for
applications.

Steps Post a job with an expiration date.
Check if the job remains visible before the expiration date.
Verify that the job automatically disappears after the expiration date.

Expected Expired jobs should be hidden from candidates and prevent new applications.

Date-Result 10.02.2025 - Successful

Test-ID T-43 Category Functional Severity High

Objectives Ensure that rejected candidates cannot reapply for the same job.

Steps A candidate applies for a job.

HR rejects the application.
Candidate attempts to reapply after rejection.
System prevents the reapplication and provides an appropriate message.

Expected Candidates should not be able to reapply after rejection

Date-Result 16.04.2025 - Successful

Test-ID T-44 Category Non-Functional
(Performance)

Severity High

Objectives Ensure the system can handle concurrent user activity without
performance degradation.

Steps Simulate 500 users logging in, applying for jobs, and submitting CVs at the
same time.
Monitor system response times and CPU/memory usage.
Check for slowdowns or crashes under load.

Expected The system should remain stable and responsive under heavy load.

Date-Result 1.04.2025 - With help of Azure VM the system is stable under high load.

Test-ID T-45 Category Functional Severity High

Objectives Ensure that candidates receive a confirmation email after successfully
submitting an application.

Steps Candidate submits an application for a job.
System triggers a confirmation email.
Candidate checks the email inbox for the confirmation message.
Attempt to apply again and check if a duplicate confirmation is sent.

Expected Candidates should receive a confirmation email after successful application
submission.

Date-Result 27.02.2025 - Successful

Test-ID T-46 Category Functional Severity Medium

Objectives Ensure that HR experts can send automated interview reminders to
candidates.

Steps HR schedules an interview for a candidate.
System generates and sends a reminder email 24 hours before the interview.
Candidate receives the reminder and confirms attendance.

Expected Interview reminders should be sent automatically before scheduled
interviews.

Date-Result 11.02.2025 - Successful

Test-ID T-47 Category AI Model Severity High

Objectives Ensure that the AI model does not introduce bias based on gender, ethnicity,
or other non-relevant attributes in candidate evaluation.

Steps Submit identical CVs with different names (e.g., male vs. female names) and
compare scores.
Submit CVs from candidates of different nationalities or ethnic backgrounds
with the same experience and evaluate score consistency.
Analyze the AI-generated interview questions for bias (e.g., different difficulty
levels based on the candidate’s background).
Conduct statistical analysis on model outputs across a diverse dataset.

Expected Candidate scores should only be affected by experience, education, and job
relevance—not gender, nationality, or other biases.
AI-generated interview questions should remain fair and job-specific, avoiding
discriminatory patterns.
System logs bias-related concerns and provides explainability metrics where
possible.

Date-Result 1.03.2025 - Initial tests showed no bias

Test-ID T-48 Category Data
Consistency
& Integrity

Severity High

Objectives Ensure that candidate test scores and rankings remain accurate and are
not overwritten or lost due to system errors.

Steps Submit multiple candidates for a job role, ensuring all receive initial scores.
Introduce a system failure or restart the server during an ongoing
evaluation.
Check if previously processed scores remain intact after the system
recovers.
Ensure no candidate scores are reset to default or lost.
Compare the final ranking list before and after system failures to ensure
consistency.

Expected Candidate scores should be accurately stored and persist even after
system crashes.
Rankings should not change unexpectedly unless new candidates are

added.
System logs should track all updates to candidate scores.

Date-Result 1.05.2025 - With regular backups the system remains consistent.

Test-ID T-49 Category Fraud Prevention &
Duplicate Application
Handling

Severity High

Objectives Ensure that candidates cannot submit multiple applications for the same
job using different accounts to manipulate rankings.

Steps A candidate creates an account and submits an application for a job.
The same candidate creates a new account using a different email and
applies for the same job again.
Check if the system detects duplicate applications based on resume
content, IP address, or other unique identifiers.
Attempt to manipulate the system by modifying slight details in the second
application (e.g., changing a single word in the resume).
Monitor system logs and candidate ranking changes to see if duplicate
detection is effective.

Expected The system should flag duplicate applications and notify HR personnel.
A candidate should not be able to submit multiple applications under
different accounts for the same job.
HR should have the ability to merge or reject duplicate applications.
Logs should record attempts at duplicate submissions.

Date-Result 22.04.2025 - Successful

Test-ID T-50 Category Data Loss
Prevention &
Auto-Save
Functionality

Severity Medium

Objectives Ensure that partially completed job applications, test answers, and
interview scheduling details are automatically saved and recoverable if the
session is interrupted.

Steps A candidate starts filling out a job application but does not submit it.
The candidate closes the browser or refreshes the page unexpectedly.
Reopen the application page and check if the previous progress is still
there.
A candidate is taking an online coding test, and their internet connection
drops for a few minutes.
Once reconnected, check if the test progress and answers are intact.
HR personnel start scheduling an interview, but the session times out

before submission.
After logging in again, check if the previous scheduling details are still
available.

Expected Job applications, test responses, and interview scheduling data should be
auto-saved periodically.
After a session timeout or browser closure, users should be able to
resume where they left off without losing progress.
The system should have a button for easy recovery.

Date-Result 23.04.2025 - Successful

6. Maintenance Plan and Details

Effective software maintenance is critical to keep Recruit4Me reliable, secure, and
up-to-date. According to IEEE Std 1219-1998, software maintenance is defined as “modification
of a software product after delivery to correct faults, to improve performance or other attributes,
or to adapt the product to a modified environment”. Our plan follows this standard’s process
model (problem identification, analysis, design, implementation, testing, delivery) and classifies
maintenance work into the three canonical types:

●​ Corrective maintenance: fixing defects and bugs to restore intended functionality.
Whenever errors are reported (via user feedback or monitoring alerts), these are logged
in Azure DevOps and prioritized for immediate fix.

●​ Adaptive maintenance: modifying the system to remain compatible with changes in its
environment. For example, updating APIs, libraries, or cloud platform versions
(Azure/AWS service updates) falls under this category. We regularly review platform
changes and adapt Recruit4Me accordingly.

●​ Perfective maintenance: enhancing performance, usability, or features based on user
feedback. This includes refactoring code for efficiency, improving UI responsiveness, or
adding small requested features.

Our development team handles all maintenance requests through a formal
change-control process: issues are logged in Azure Boards, classified by type, estimated, and
either scheduled for the next release or handled immediately if critical. Scheduled updates (such
as quarterly security patches or feature releases) are announced in advance, while urgent
security fixes are deployed as emergency patches.

Key elements of our maintenance framework include:

●​ CI/CD Automation: We use Azure DevOps Pipelines to automate build, test, and
deployment processes. Each commit to our Git repository triggers a build pipeline that

runs static analysis and unit/integration tests. Successful builds automatically deploy to a
staging environment, where end-to-end tests are run, and then to production with only
minimal manual approval. Infrastructure-as-code (using ARM templates or Terraform)
ensures that environments are versioned and reproducible.

●​ Monitoring & Scaling: We employ cloud monitoring tools to track system health. For
Azure services, we use Azure Monitor and Application Insights to collect metrics (CPU,
memory, response times) and logs in real time; for any AWS-hosted components (Jitsi),
we use AWS CloudWatch. Dashboards display key indicators and automated alerts
notify the team if thresholds (e.g. high error rate or latency) are exceeded. The
application is hosted on scalable infrastructure (e.g. Azure Kubernetes Service or AWS
Elastic Kubernetes Service), with autoscaling rules that add or remove instances based
on load. This elastic setup allows Recruit4Me to handle traffic spikes (such as surges in
job applications) without manual intervention.

●​ Error Tracking: We integrate an error-monitoring service (such as Sentry or App
Insights) into our CI/CD pipeline. Runtime exceptions and crashes are automatically
captured, and an issue is created in our tracking system linked to the corresponding
code commit. This traceability dramatically speeds up corrective maintenance, as
developers can see exactly which change introduced a fault.

●​ Backup & Disaster Recovery: We maintain a robust backup and recovery policy for all
critical data (databases, user profiles, job postings, model artifacts). Azure components
use Azure Backup with a Recovery Services vault, which takes scheduled snapshots to
geo-redundant storage. AWS components use AWS Backup or native snapshot
capabilities (EBS/RDS) with cross-AZ replication, providing “11 9s” durability for stored
data. We define Recovery Time Objectives (RTO) and Recovery Point Objectives (RPO)
for each service (e.g. RTO of 1 hour, RPO of 24 hours for mission-critical data) and
enforce backup retention policies (daily, weekly, monthly snapshots) to meet compliance
needs. Importantly, we regularly test recovery procedures: partial restores and full
disaster-recovery drills are conducted (at least semi-annually) to verify that services can
be restored within targets. A documented recovery playbook outlines roles and
step-by-step procedures to follow in the event of a catastrophic failure.

By combining IEEE 1219–compliant processes with automated cloud tooling and
disciplined procedures, our maintenance plan ensures that Recruit4Me can evolve gracefully.
Continuous monitoring and CI/CD deployment let us detect issues early and deliver fixes
promptly, while scaling and backup mechanisms protect against downtime. In summary, this
comprehensive approach to corrective, adaptive, and perfective maintenance provides a robust
foundation for long-term software quality and availability.

7. Other Project Elements

7.1 Consideration of Various Factors in Engineering Design

7.1.1 Constraints
​
7.1.1.1 Implementation Constraints

●​ System was designed using React for front-end, Express.js for
backend development.

●​ Predefined APIs were needed to utilize speech-to-text processes such as
Google Speech-to-text or AWS Transcribe.

●​ Parsing resumes require skill extraction thus integration of external
tools that we use like Azure Document Intelligence.

●​ A secure database MySQLto store candidate records and test results.
●​ Platform should be scalable to handle large data of candidates and

companies.
●​ Protocols making the application secure are used such as OAuth2 or

SSO.
●​ System is hosted by Azure to increase availability and reliability.
●​ In a certain(now undefined) period video data must be deleted from the

database to ensure high availability in the backend.

7.1.1.2 Economic Constraints
​
​ For the moment, the Azure Service Credits are utilized which were given by Microsoft,
however, for long-run other potential services should be observed.

●​ In resume parsing, with support of NLP and predefined models from the team, potential
API costs are minimized.

●​ Open-source solutions are implemented first to see effectiveness before using large
scale APIs like Google Speech-to-text, AWS Transcribe, Azure’s API.

●​ Google cloud platform is an option, which utilizes Compute Engine instances and
BigQuery for data analysis.

●​ Amazon Web Services(AWS) offers free EC2 instances, Lambda functions and RDS for
a limited duration, which are analyzed to ensure if it is proper for early-stage
development.

●​ Google Speech-to-text requires approximately 50 TL per hour for real-time transcription.
AWS Transcribe has a similar pricing, lower volumes can be managed however large
scale candidate pools require budget evaluation.

●​ Efforts should be made to optimize these resources by scheduling GPU usage only
during model training or evaluation processes.

●​ A modestly scaled deployment (e.g., 2 vCPUs, 8GB RAM, and 50GB storage) on AWS
or GCP costs around 650 to 2000 TL per month. Adding auto-scaling capabilities for
peak periods could slightly increase this price.

●​ Managed database services like AWS RDS or GCP Cloud SQL cost approximately 1000
to 3500 TL per month depending on storage and performance needs. These are options
to use when our free credits from Azure are finished which also have a Cloud Service for
deployment for initial release.

●​ Regular updates, monitoring, and bug fixes require developer hours. Allocating team
resources efficiently is crucial to avoid unnecessary expenditures. We managed to
handle testing with automated tools as it doesn’t have a big load on us.

​
7.1.1.3 Ethical Constraint

●​ System must ensure that all evaluations and eliminations are objective and free from

bias based on factors such as gender, ethnicity, nationality or other non-technical factors.
Which means that grading should be based on skill sets, experiences and test
performances.

●​ Communication skills ratings must be standardized by using well-defined criteria, such
as clarity, grammar, and coherence, or some factors explicitly indicated by the company
to avoid subjective judgments and potential biases.

●​ AI models should be regularly checked for unintentional bias in the predefined
algorithms and data handling to ensure fair treatment of all candidates.

●​ All candidate data, including resumes, test results, and recordings, must comply with
GDPR or other relevant data protection regulations, depending on the region.

●​ Recordings should be stored for no longer than a certain period, as specified, and
deleted securely afterward.

●​ Notifications sent to candidates about results, feedback, or interviews must respect their
privacy preferences and include clear opt-out options for future communication.

●​ Encryption should be used to protect sensitive data during transmission and storage,
ensuring the highest level of security.

●​ For a possible built-in messaging in application encryption should be made to protect
privacy.

●​ For candidates eliminated by the system, the reasons must be explained in a transparent
and professional manner, including data points such as skill gaps, test scores, or
evaluation criteria.

●​ All third-party tools integrated into the system, such as resume parsers, speech-to-text
APIs, or scheduling platforms, must comply with strict ethical standards and avoid
misuse of candidate data.​

7.1.2. Standards
We use the Agile technique in the development of Recruit4Me HR Automation, dividing

the project into two-week sprints that encourage flexibility in responding to changing
requirements and iterative progress. Every sprint is devoted to the autonomous development of
particular modules, which are then combined into the system as a whole at the end of each
cycle. This strategy guarantees ongoing delivery of useful components and permits prompt

modifications in response to stakeholder input. Recruit4Me HR Automation is carefully crafted to
fully adhere to the ISO/IEC 25010 software quality model, which covers essential qualities
including functionality, dependability, usability, efficiency, maintainability, and portability, in order
to provide the highest standards of software quality [1]. At the same time, the web application
component closely complies with Web Content Accessibility Guidelines (WCAG) 2.1,
guaranteeing that the platform satisfies international accessibility standards and is usable by all
users, including those with disabilities [2]. We have chosen UML 2.5.1 as our main modeling
standard for system modeling, which makes it easier to create thorough and consistent
diagrams that clearly convey the architecture, parts, and interactions of the system.
Furthermore, the requirements documentation is painstakingly created in compliance with IEEE
830 criteria, guaranteeing that all functional and non-functional needs are precisely stated,
organized, and simple enough for all parties involved to understand [3]. This combination of
Agile practices and adherence to industry-recognized engineering standards ensures that
Recruit4Me HR Automation is developed in a structured, high-quality manner, capable of
meeting user needs, maintaining flexibility throughout its lifecycle, and delivering a robust,
accessible, and maintainable HR automation solution.

7.2 Ethics and Professional Responsibilities

We integrated ethical considerations throughout Recruit4Me. In our machine learning
usage, we proactively mitigated algorithmic bias: we deliberately excluded sensitive attributes
(race, gender, etc.) from our training data and designed the model to focus on objective
qualifications. We plan to regularly audit model outputs for fairness (e.g. checking that
recommendations do not disproportionately disadvantage any group). Privacy and user consent
were also priorities: all personal data is encrypted and accessed only by authenticated users,
and we conform to privacy laws and best practices in storing and processing user data. We
emphasize transparency about our algorithms: documentation and user help clearly explain how
candidate-job matching works and how interview recommendations are generated. These
practices follow widely accepted AI ethics principles – for example, Google’s AI guidelines
advocate avoiding unfair bias and promoting user privacy. By aligning with these professional
ethics (fairness, accountability, transparency), we aim to maintain user trust and social
responsibility in our platform.

7.3 Teamwork Details

7.3.1 Contributing and Functioning Effectively on the Team

In order to keep track of the tasks and the situation of those tasks, we utilize Notion. With
the help of the Notion, everyone sees the contribution of both himself and other contributors. We
met on a weekly basis to find answers on the problems that we are facing. Another benefit of
these weekly meetings is identifying the next step in the project. Cross functional team
members organize the integrity of the ML and application sides of the project. Apart from those

weekly meetings, we have also heavily used other communication tools to enhance team
collaboration such as WhatApp and Zoom.

7.3.2 Helping Create a Collaborative and Inclusive Environment

Proper teamwork is essential for collaboration. Therefore, noting the tasks are
necessary. Because of this, we have decided to use planning applications. Notion is the sprint
planning application where noting the tasks and sprint planning is possible. This application also
has filters showing tasks based on the due time or person. With those filters, we can determine
the workload of each person in the project. Another tool that we used is discord. With the help of
the discord, we manage to make meetings even if we are far from each other. Another benefit of
the discord is grouping the different tasks in different chat rooms. This feature of discord eases
document management. We also have a WhatsApp group to enhance the daily communication
among team members. This group has a huge positive effect on the relationship among team
members. With the help of WhatsApp messaging, we are able to manage the positive energy
among the team members. Lastly, workload is increasing and deliverable deadlines are coming
up. We meet face to face to enhance the communication and keep motivation high among team
members. With the help of face to face interactions, we are able to handle the tasks efficiently
and faster.

7.3.3 Taking Lead Role and Sharing Leadership on the Team

Since we keep in touch very frequently, there is no need for the leader or any kind of
leadership. However, based on the experiences for the particular work, some of us take the
leadership for specific tasks for a limited amount of time. Thanks to this approach, everyone in
the team has the opportunity to enhance managing skills. Furthermore, since everybody knows
the importance of the tasks that they did during the whole project, everybody does those tasks
on time.

7.3.4 Meeting Objectives (Mapping Against Original Project Plan)

We continuously tracked our progress against the original plan. We set milestones at the
start of the project (e.g., completing the ML match model by week 6, video chat integrated by
week 10) and had a Kanban board where we ticked off items as they were completed. At the
end, all of the major objectives in our plan were met on schedule: job posting/search, candidate
matching, and video interviewing were all built and tested. When minor deviations occurred
(e.g., it took a little longer than expected to tweak the ML model), we adjusted subsequent sprint
plans and team assignments accordingly to compensate. In each case, tasks were rearranged
to ensure deliverables remained on track. This rigorous tracking and flexibility prove that our
team met project goals effectively and showed very good project management.

7.4 New Knowledge Acquired and Applied

The project was a major learning experience. Team members gained new technical skills and
process knowledge, including:

●​ Machine Learning: We learned about applied NLP and ML concepts in matching
resumes and jobs. Using libraries like scikit-learn and TensorFlow, we played around
with preprocessing text (e.g. tokenization, vectorization) and with training a classification
model. We learned these concepts by following online tutorials and documentation and
used them to build our first recommendation engine.

●​ React and Front-End Development: Some members of the team learned React
expertise. We learned how to build dynamic user interfaces with components, hooks,
and state management, and added UI libraries (such as Material-UI) for a polished look.
Along the way, we also added accessibility features following WCAG guidelines.
Documentation and code samples (React official documentation and community
resources) were key study aids, and pair programming helped transfer knowledge.

●​ Video Integration (Jitsi): We learned how to incorporate Jitsi Meet for live video
interviews. By learning the official Jitsi API documentation and experimentation, we
learned how to incorporate one-to-one video calls into our web application, handling
authentication and call setup. This provided us with a better understanding of WebRTC
and real-time communication in web development.

●​ CI/CD and DevOps: We learned how to apply continuous integration/deployment. We
developed Azure DevOps pipeline definitions (YAML) and learned how to automate
releases, testing, and builds. Through Microsoft's Learn tutorials and trial-and-error, we
tuned our deployment process so that releases could be done in a timely fashion. We
learned how to practice infrastructure-as-code, which solidified our grasp of reproducible
deployments.

●​ Process and Collaboration: We improved our software process skills. We adopted
Agile/Scrum practices (writing user stories, sprint planning, retrospectives) that made the
development more iterative and responsive. We created an SRS and test cases using
IEEE best practices, which taught us how to document requirements and testing in a
systematic manner. Through version control and code reviews, we learned effective
team collaboration workflows.

In the process of all this, we utilized different ways of learning: online tutorials and official
documentation (Azure docs, React guides, Jitsi reference, IEEE standards, etc.) were foremost
sources, supported by code samples and developer communities. Pair programming sessions
and reviewing code as a team allowed real-time learning from each other. We also came up with
a team wiki and design logs in order to make decisions and back learning further. Overall, this
project offered the team beneficial real-world exposure to modern web and ML development,
CI/CD, and collaborative engineering practices.

8. Conclusion and Future Work

In total, the Recruit4Me project managed to meet its objectives by applying the intended
functionality with professional proficiency. We have built an end-to-end recruitment portal where
employers can post and manage job vacancies, candidates can search and apply for vacancies,
and our ML-based engine conducts automatic candidate matching for vacancies. We have
added live video interviewing functionalities (with Jitsi) and adhered to our non-functional
requirements (security, usability, etc.). All of the core features identified in the project plan were

created and tested within schedule, demonstrating that project deliverables were meeting our
original objectives.

In the future, we have identified several improvements to maximize the value of the
platform:

●​ Recruiter-Side Analytics: We plan to include employer dashboards and reporting
features. These would include analytics such as application volume by job, candidate
demographics, and time-to-fill metrics. By having visualized insights, recruiters would be
in a position to make data-driven decisions and have a clearer picture of their hiring
pipelines.

●​ Advanced ML/NLP Models: We would like to improve the matching engine leveraging
more advanced natural language processing. For example, using most recent
Transformer-based models (like BERT) to represent resumes and job descriptions would
capture more semantic meaning. We would obtain more training data and fine-tune our
algorithms so that candidate suggestions are more relevant and accurate.

●​ Global Expansion: In order to cater to an international market, Recruit4Me can be
localized for various regions. This includes supporting additional languages (interface
translation and job description translation), compatibility with national job taxonomies,
and compliance with regional legislation (privacy policy, labor law, etc.). Localization of
the platform will enable us to grow Recruit4Me's user base and meet the needs of global
recruiters and applicants.

These advancements are grounded on our current establishment. Incorporating
employer analytics, enhancing our ML models, and expanding our markets to international
territories, Recruit4Me will be a more effective and efficient tool. Successfully completing the
project and the knowledge gained provide a strong foundation for these advancements, and
Recruit4Me will be able to evolve with future recruitment issues.

9. Glossary

●​ HR (Human Resources): HR department in an organization is responsible for managing
employee-related functionalities, such as recruitment, training, rating performance and
workplace policies. In the Recruit4Me application, HR is a major part of the system,
handling large volumes of candidate applications and assisting automation. This system
facilitates CV parsing, rating candidates, test generation and execution, scheduling
interviews which minimize manual interventions. HR can focus on efficiently hiring a
candidate with assistance of this automation. AI and ML further enhance HR operations
by providing unbiased data and evaluation of applicants.​

●​ AI (Artificial Intelligence): Artificial intelligence aids in developing the systems which
are capable of doing tasks which mostly require human intelligence, such as
decision-making, natural language processing(NLP), and recognition of patterns. In
Recruit4Me, AI is crucial in automatization of the candidate evaluation process.
Speech-to-Text for online interview response evaluation, generating questions based on

level and domain of the candidate with the assistance of multiple APIs such as OpenAI.
These ensure HR workflows stay consistent and unbiased.

●​ ML (Machine Learning): ML is an AI component which focuses on building algorithms,

models to learn from data and make predictions beforehand without explicit
programming. In Recruit4Me, ML is utilized in the CV evaluation pipeline, where the
Model Evaluation Engine is used. These compose of tasks such as analyzing candidate
CVs for requested qualifications by the company, rating candidates based on a
predefined criteria, and give them ranks to develop assessment for further states of the
laboring. ML algorithms provide feedback for improvement in addition, and continuously
refine the evaluation methods as more data is gained, increasing accuracy and reliability
of the system.

10. References

​ ​
​ [1] “ISO 25010.” Online. Available:
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010. [Accessed 1-May-2025].
​
​ [2] “Web Content Accessibility Guidelines (WCAG) 2.1,” Sep. 2023. Online. Available:
https://www.w3.org/TR/WCAG21/. [Accessed 1-May-2025].​

[3] IEEE Computer Society and Software Engineering Standards Committee, IEEE
Recommended Practice for Software Requirements Specifications. IEEE Computer Society,
1998.

	
	TABLE OF CONTENTS​
	
	1.Introduction
	​ 1.1 Purpose of the system
	 1.1.1 Recruit4Me’s Two-Stage Innovation
	1.1.2. Stage 1: Automated Candidate Elimination
	1.1.3. Stage 2: Pay-as-You-Go Expert Hiring

	 1.2. Design goals

	2. Requirements Details
	2.1 Functional Requirements - Flow
	2.1.1 User Management & Authentication
	2.1.2 Job & Application Lifecycle
	2.1.3 Stage 1: Automated AI-Driven Screening
	2.1.4 Stage 2: Pay-As-You-Go Expert Interviews
	2.1.5 Reporting & Analytics
	2.2 Non-Functional Requirements
	2.2.1 Usability & Accessibility
	2.2.2 Performance & Scalability
	2.2.3 Reliability & Availability
	2.2.4 Security & Compliance
	2.2.5 Maintainability & Observability

	3. Final Architecture and Design Details
	3.1. ML Based CV Evaluation
	3.2. Structured Question Selection and Adaptive Testing
	3.3. Persistent data management
	3.4. Database and Storage Solutions
	3.4.1. Data Processing and AI Model Deployment
	3.4.2. Security, Compliance, and Data Integrity

	 3.5. Access Control and Security
	 3.6 Subsystem Services
	3.6.1 UI Layer
	3.6.2 Auth Layer
	3.6.3 Business Logic(Service) Layer
	3.6.4 Database Layer
	3.6.5 Jitsi Instance Layer (Hosting Interviews)

	4. Development and Implementation Details
	
	6. Maintenance Plan and Details
	7. Other Project Elements
	7.1 Consideration of Various Factors in Engineering Design
	7.1.1 Constraints
	​7.1.1.1 Implementation Constraints
	7.1.1.2 Economic Constraints
	​7.1.1.3 Ethical Constraint

	7.1.2. Standards

	7.2 Ethics and Professional Responsibilities
	7.3 Teamwork Details
	7.3.1 Contributing and Functioning Effectively on the Team
	7.3.2 Helping Create a Collaborative and Inclusive Environment
	7.3.3 Taking Lead Role and Sharing Leadership on the Team

	8. Conclusion and Future Work
	9. Glossary
	10. References

